On univoque Pisot numbers
نویسندگان
چکیده
We study Pisot numbers β ∈ (1, 2) which are univoque, i.e., such that there exists only one representation of 1 as 1 = P n≥1 snβ −n, with sn ∈ {0, 1}. We prove in particular that there exists a smallest univoque Pisot number, which has degree 14. Furthermore we give the smallest limit point of the set of univoque Pisot numbers.
منابع مشابه
A note on univoque self-Sturmian numbers
We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of a unimodal continuous map from the unit interval into itself, but it also characterizes univoque real numbers; the other is an equivalent definition of characteristic Sturmian sequences. As a corollary to our study we obtain that a real number β in (1, 2) is univ...
متن کاملA Certain Finiteness Property of Pisot Number Systems
In the study of substitutative dynamical systems and Pisot number systems, an algebraic condition, which we call ‘weak finiteness’, plays a fundamental role. It is expected that all Pisot numbers would have this property. In this paper, we prove some basic facts about ‘weak finiteness’. We show that this property is valid for cubic Pisot units and for Pisot numbers of higher degree under a domi...
متن کاملUnivoque numbers and an avatar of Thue-Morse
Univoque numbers are real numbers λ > 1 such that the number 1 admits a unique expansion in base λ, i.e., a unique expansion 1 = ∑ j≥0 ajλ −(j+1), with aj ∈ {0, 1, . . . , ⌈λ⌉ − 1} for every j ≥ 0. A variation of this definition was studied in 2002 by Komornik and Loreti, together with sequences called admissible sequences. We show how a 1983 study of the first author gives both a result of Kom...
متن کاملOn beta expansions for Pisot numbers
Given a number β > 1, the beta-transformation T = Tβ is defined for x ∈ [0, 1] by Tx := βx (mod 1). The number β is said to be a betanumber if the orbit {Tn(1)} is finite, hence eventually periodic. In this case β is the root of a monic polynomial R(x) with integer coefficients called the characteristic polynomial of β. If P (x) is the minimal polynomial of β, then R(x) = P (x)Q(x) for some pol...
متن کاملSome computations on the spectra of Pisot and Salem numbers
Properties of Pisot numbers have long been of interest. One line of questioning, initiated by Erdős, Joó and Komornik in 1990, is the determination of l(q) for Pisot numbers q, where l(q) = inf(|y| : y = 0 + 1q + · · ·+ nq, i ∈ {±1, 0}, y 6= 0). Although the quantity l(q) is known for some Pisot numbers q, there has been no general method for computing l(q). This paper gives such an algorithm. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 76 شماره
صفحات -
تاریخ انتشار 2007